ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Федеральное государственное бюджетное образовательное учреждение высшего образования «Петербургский государственный университет путей сообщения Императора Александра I» (ФГБОУ ВО ПГУПС)

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

дисциплины Б1.В.3 «ОСНОВАНИЯ И ФУНДАМЕНТЫ»

> по профилю «Автомобильные дороги»

Форма обучения – очная

ЛИСТ СОГЛАСОВАНИЙ

Оценочные материалы рассмотрены и утверждены на заседании кафедры «Основания и фундаменты» Протокол №4 от «16» декабря 2024г.

Заведующий кафедрой «Основания и фундаменты» «16» декабря 2024г.

В.Н. Парамонов

СОГЛАСОВАНО

Руководитель ОПОП ВО по профилю «Автомобильные дороги» «16» декабря 2024г.

А.Ф. Колос

1. Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы

Планируемые результаты обучения по дисциплине, обеспечивающие достижение планируемых результатов освоения основной профессиональной образовательной программы, приведены в п. 2 рабочей программы.

2. Задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих индикаторы достижения компетенций в процессе освоения основной профессиональной образовательной программы

Перечень материалов, необходимых для оценки индикатора достижения компетенций, приведен в таблице 2.1.

Таблипа 2.1

Индикатор достижения компетенции	Планируемые результаты обучения	Материалы, необходимые для оценки индикатора достижения компетенции
	подготовки проектной продукции по с еобходимыми исходными данными	автомобильным дорогам
ПК -1.2.1. Умеет применять требования руководящих, нормативно-технических и методических документов, регламентирующих выполнение проектно-изыскательских и строительномонтажных работ при выполнении расчетной части проектной продукции по отдельным узлам и элементам автомобильных дорог и по автомобильным дорогам в целом и (или) оформление ведомостей объемов работ	Обучающийся умеет применять требования руководящих, нормативно-технических и методических документов, регламентирующих выполнение проектно-изыскательских и строительно-монтажных работ при выполнении расчетной части проектной продукции по отдельным узлам и элементам автомобильных дорог и по автомобильным дорогам в целом и (или) оформление ведомостей объемов работ	Вопросы к экзамену № 1-65 Практические занятия №1-11 Тестовые задания №1-30
ПК-1.2.6. Умеет анализировать информацию, необходимую для выполнения и оформления расчетов узлов и элементов автомобильных дорог, при подготовке проектной продукции по автомобильным дорогам	Обучающийся умеет анализировать информацию, необходимую для выполнения и оформления расчетов узлов и элементов автомобильных дорог, при подготовке проектной продукции по автомобильным дорогам	Вопросы к экзамену № 1-65 Практические занятия №1-11 Тестовые задания №1-30

Материалы для текущего контроля

Для проведения текущего контроля по дисциплине обучающийся должен выполнить следующие задания:

Перечень и содержание практических занятий

Практическое занятие №1. Анализ инженерно-геологических условий и оценка строительных свойств грунтов

- 1. Расчет производных физических характеристик грунта.
- 2. Установление наименования грунта и определение его условного расчетного сопротивления.
- 3. Построение эпюры условного расчетного сопротивления.

Практическое занятие №2. Проектирование фундамента на естественном основании

- 1. Выбор глубины заложения фундамента.
- 2. Определение расчетного сопротивления грунта несущего слоя.
- 3. Определение размеров подошвы фундамента.
- 4. Конструирование фундамента.

Практическое занятие №3. Расчет фундамента на естественном основании по I группе предельных состояний (часть I)

- 1. Расчет вертикальной нагрузки на уровне подошвы фундамента.
- 2. Проверка напряжений по подошве фундамента.
- 3. Построение эпюры напряжений по подошве фундамента.

Практическое занятие №4. Расчет фундамента на естественном основании по I группе предельных состояний (часть II)

- 1. Проверка устойчивости фундамента против опрокидывания.
- 2. Проверка устойчивости фундамента против сдвига по подошве.

Практическое занятие №5. Расчет фундамента на естественном основании по II группе предельных состояний (часть I)

- 1. Проверка слабого подстилающего слоя.
- 2. Проверка положения равнодействующей сил.

Практическое занятие №6. Расчет фундамента на естественном основании по II группе предельных состояний (часть II)

- 1. Проверка осадки фундамента.
- 2. Проверка горизонтального смещения верха опоры.

Практическое занятие №7. Проектирование свайного фундамента

- 1. Определение глубины заложения ростверка.
- 2. Определение длины сваи и выбор тип сваи.
- 3. Определение число свай.
- 4. Размещение свай и уточнение размеров ростверка.

Практическое занятие №8. Расчет свайного фундамента по I группе предельных состояний

1. Проверка наиболее нагруженной сваи

Практическое занятие №9. Расчет свайного фундамента по II группе предельных состояний

- 1. Расчет свайного фундамента как условного массива.
- 2. Расчет осадки свайного фундамента

Практическое занятие №10. Технико-экономическое сравнение вариантов

- 1. Расчет стоимости фундамента на естественном основании.
- 2. Расчет стоимости свайного фундамента.

Практическое занятие №11. Расчет шпунтового ограждения 1. Определение глубины заделки шпунта. 2. Расчет шпунта на прочность.

Тестовые задания

				товые задания			
1.	•		монстрируйте умение выбирать надежный слой грунта основания для ачи на него нагрузки от здания или сооружение – укажите состояние песчаных				
					ие – укажите состояние песчаных адежным основанием		
2.					ений в массиве грунта.		
		слите значение природных напряжений на кровле водоупорного слоя					
		а на глубине 4,0 м, если выше расположен слой песка (мощностью 4м) с					
	уделн	ным весом γ=19,2 кH/м ³ , удельным весом песка с учетом					
					Уровень грунтовых вод		
					ите с точностью до десятых.		
3.	_				ений в массиве грунта.		
					а кровле третьего слоя грунта, мощностью 5м) с удельным		
					ставлен суглинком		
				сом γ ₂ =19,5 кН/			
					ите с точностью до десятых.		
4.					ость сжимаемого слоя по		
	метод	ду Н.А. Цитови	г ча.				
	Фунд	амент прямоуг	ольный, раз	мерами в плане	$= 9.0(l) \times 3.0(b) \text{ m}.$		
		l/b	Значения	я при η = 0,2			
		U/D	Αω*	Αω**			
		1	1,20	0,94			
		1,5	1,45	1,15			
		2	1,63	1,30			
		3	1,90	1,54			
		4	2,09	1,72			
		5	2,24	1,84			
		6	2,37	-			
		7	2,47	-			
		8	2,56	-			
		9	2,62	-			
		10 и более	2,71	2,26			
		*для максималь	ьной осадки под	ц центром			
		фундамента					
	0===	** для средней осадки фундамента Определите мощность сжимаемой толщи					
5.					ACTI CYMMANOFO CHOS HO		
J.	_	емонстрируите ду Н.А. Цитови	•	ондолять мощно	ость сжимаемого слоя по		
		•		ной в основани	и 12,0(b)м. Длина насыпи 300		
	(<i>l</i>)m.	1	P**		7-(-)		
			Значения	я при η = 0,2			
		l/b	Aω*	Αω**			
		1	1,20	0,94			
		1,5	1,45	1,15			
L		<i>'</i>	·				

2	1,63	1,30
3	1,90	1,54
4	2,09	1,72
5	2,24	1,84
6	2,37	-
7	2,47	-
8	2,56	-
9	2,62	-
10 и более	2,71	2,26
*для максималь фундамента	ьной осадки под	ц центром

^{**} для средней осадки фундамента

Определите мощность сжимаемой толщи

- 6. Продемонстрируйте умение конструировать свайные фундаменты. Укажите диапазон возможных расстояний между осями свай свайных фундаментов
- 7. Продемонстрируйте умение давать оценку напряжений в массиве грунта. Вычислите значение природных напряжений на кровле водоупорного слоя грунта на глубине 5,0 м, если выше расположен слой песка (мощностью 5м) с удельным весом γ =18,0 кH/м³, удельным весом песка с учетом взвешивающего действия воды γ _{sb}=8,9 кH/м³. Уровень грунтовых вод расположен на глубине 2,0 м. Значение округлите с точностью до десятых.
- 8. Продемонстрируйте умение давать оценку напряжений в массиве грунта. Вычислите значение природных напряжений на кровле четвертого слоя грунта, если первый слой грунта представлен песком (мощностью 2м) с удельным весом $\gamma_1=18,0$ кН/м³, второй слой грунта представлен суглинком (мощностью 2м) с удельным весом $\gamma_2=20,1$ кН/м³, а третий слой грунта представлен глиной (мощностью 4м) с удельным весом $\gamma_2=20,8$ кН/м³ Грунтовые воды отсутствуют. Значение округлите с точностью до десятых.
- 9. Продемонстрируйте умение определять мощность сжимаемого слоя по методу Н.А. Цитовича.

Фундамент прямоугольный, размерами в плане 16,0(l) х 4,0(b) м.

1.0	Значения при η = 0,2		
l/b	Aω*	Αω**	
1	1,20	0,94	
1,5	1,45	1,15	
2	1,63	1,30	
3	1,90	1,54	
4	2,09	1,72	
5	2,24	1,84	
6	2,37	-	
7	2,47	-	
8	2,56	-	
9	2,62	-	
10 и более	2,71	2,26	

^{*}для максимальной осадки под центром фундамента

Определите мощность сжимаемой толщи

^{**} для средней осадки фундамента

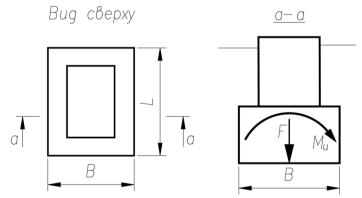
10. Продемонстрируйте умение определять мощность сжимаемого слоя по методу Н.А. Цитовича.

Рассматривается насыпь с шириной в основании 10,0(b)м. Длина насыпи 70 (l)м.

	Значения при η = 0,2		
l/b	Aω*	Αω**	
1	1,20	0,94	
1,5	1,45	1,15	
2	1,63	1,30	
3	1,90	1,54	
4	2,09	1,72	
5	2,24	1,84	
6	2,37	-	
7	2,47	-	
8	2,56	-	
9	2,62	-	
10 и более	2,71	2,26	
10 и более	2,71	2,26	

^{*}для максимальной осадки под центром фундамента

Определите мощность сжимаемой толщи


11. Продемонстрируйте умение проектировать фундаменты транспортных сооружений. Определите величину минимального давления по подошве фундамента при условии, что:

ширина подошвы В=3м;

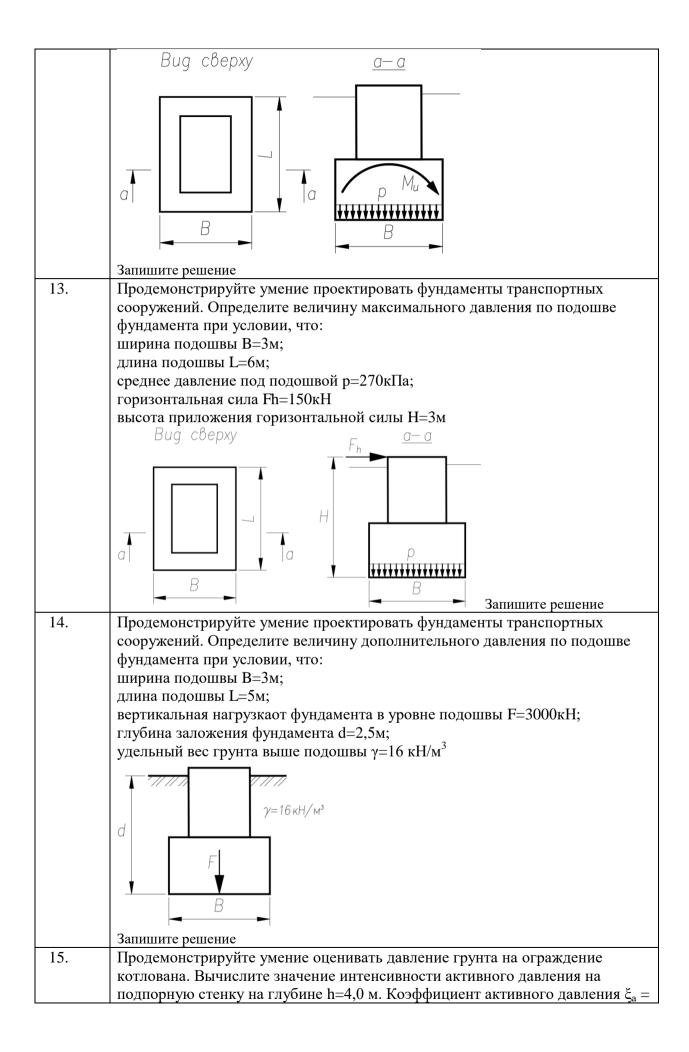
длина подошвы L=4м;

вертикальная нагрузка F=2160кH;

момент M=240кH*м

Запишите решение

12. Продемонстрируйте умение проектировать фундаменты транспортных сооружений. Определите величину максимального давления по подошве фундамента при условии, что:


ширина подошвы В=2м;

длина подошвы L=4,5м;

среднее давление под подошвой р=180кПа;

момент М=120кН*м

^{**} для средней осадки фундамента

							оставляет $\gamma_{\text{aac}} = 18 \text{ кH/m}^3$.
	_	Поверхность засыпки горизонтальна ($\alpha = 0$), выполнена в уровень с верхом					
	-	подпорной стенки.					
		Значение в кПа округлите с точностью до десятых. Продемонстрируйте умение оценивать давление грунта на ограждение					
16.	-	-		•			1.
		глована. Вычислите значение интенсивности пассивного давления на					
		порную стенку в уровне подошвы фундамента подпорной стенки.					
	Удельный	ельный вес грунта обратной засыпки составляет $\gamma_{\text{зас}} = 17.8 \text{ кH/m}^3$, угол греннего трения грунта $\varphi = 30^0$. Глубина заложения подошвы фундамента					
			-	грунта ф	$0 = 30^{\circ}$. 1	лубина за	пожения подошвы фундамента
	составляе		-				
17						ью до деся	
17.	-	-		умение	оценива	ть дополні	ительные напряжения в
	массиве г			J			4.2(1) 2.0(1)
							e 4,2(<i>l</i>) х 3,0(<i>b</i>) м.
	Дополнит	елы				Be $P_0 = 250$	KHa
			Значе	нияαп	ри η =		
	2z/	\boldsymbol{b}		l/b			
			1,0	1,4	1,8		
	1,2	2	0,606	0,682	0,717	=	
	1,0	5	0,449	0,532	0,578		
	2,0)	0,336	0,414	0,462		
	Вычислит	е зн	начение	дополн	ительнь	л их напряже	ний на глубине 2,4м. Значение
	в кПа окр						,
18.	Пролемов						
10.	Продемог	істрі	ируите	умение	оценива	ть дополні	ительные напряжения на
10.		-	1 0	•			ительные напряжения на сенного ниже подошвы
10.	кровле сл фундамен	абог та н	го подс на 3,0м	тилающ((z).	его слоя	, располож	сенного ниже подошвы
10.	кровле сл фундамен Фундамен	абог та н нт пр	го подс на 3,0м рямоуго	тилающ (z). ольный,	его слоя размера	, располож ми в плане	тенного ниже подошвы $\approx 8.0(l) \times 5.0(b)$ м.
10.	кровле сл фундамен Фундамен	абог та н нт пр	го подс на 3,0м рямоуго	тилающ (z). ольный,	его слоя размера	, располож	тенного ниже подошвы $\approx 8.0(l) \times 5.0(b)$ м.
	кровле сл фундамен Фундамен	абог та н нт пр	го подс на 3,0м рямоуго ное дав	тилающ (z). ольный,	его слоя размера о подош	, располож ми в плане	тенного ниже подошвы $\approx 8.0(l) \times 5.0(b)$ м.
10.	кровле сл фундамен Фундамен Дополнит	абог та н нт пр	го подс на 3,0м рямоуго ное дав	тилающо (z). ольный, эление по	его слоя размера о подош	, располож ми в плане	тенного ниже подошвы $\approx 8,0(l) \times 5,0(b)$ м.
	кровле сл фундамен Фундамен	абог та н нт пр	го подс на 3,0м рямоуго ное дав Значе	тилающо (z). ольный, сление по вния а п вния в по вния в по в в в в в в в в в в в в в в в в в	его слоя размера о подош ри <i>η</i> =	, располож ми в плане	тенного ниже подошвы $\approx 8.0(l) \times 5.0(b)$ м.
	кровле сл фундамен Фундамен Дополнит	абог та н нт пр тельн b	то подс на 3,0м рямоуго ное дав Значе	тилающо (z). ольный, эление по ения α п l/b	его слоя размера о подош ри η = 1,8	, располож ми в плане	тенного ниже подошвы $e 8,0(l) \times 5,0(b)$ м.
	кровле сл фундамен Фундамен Дополнит	абог та н нт пр тельн b	го подс на 3,0м рямоуго ное дав Значе	тилающо (z). ольный, сление по вния а п вния в по вния в по в в в в в в в в в в в в в в в в в	его слоя размера о подош ри <i>η</i> =	, располож ми в плане	тенного ниже подошвы $\approx 8.0(l) \times 5.0(b)$ м.
	кровле сл фундамен Фундамен Дополнит	абог та н нт пр ельн b	то подс на 3,0м рямоуго ное дав Значе	тилающо (z). ольный, эление по ения α п l/b	его слоя размера о подош ри η = 1,8	, располож ми в плане	тенного ниже подошвы $e 8,0(l) \times 5,0(b)$ м.
	кровле сл фундамен Фундамен Дополнит 2z/	абог та н тта н тельн в	го подс на 3,0м рямоуго ное дав Значе 1,0	тилающо (z). ольный, эление по ения α п <i>l/b</i> 1,4 0,682	размера о подош ри η = 1,8	, располож ми в плане	тенного ниже подошвы $\approx 8.0(l) \times 5.0(b)$ м.
	хровле сл фундамен Фундамен Дополнит 2 <i>z/</i> 1,2	абог та н нт пр ельн b	то поде на 3,0м рямоуго ное дав Значе 1,0 0,606 0,449 0,336	тилающо (z). ольный, эление по ения а п <i>l/b</i> 1,4 0,682 0,532 0,414	размера о подош ри η = 1,8 0,717 0,578 0,462	, располож ми в плане ве P ₀ = 330	енного ниже подошвы $e 8,0(l) \ge 5,0(b)$ м. $e \ \kappa \Pi a$
	хровле сл фундамен Фундамен Дополнит 2 <i>z/</i> 1,2	абог та н т пр тельн b	то подена 3,0м рямоуго ное дав Значе 1,0 0,606 0,449 0,336 начение	тилающо (z). ольный, оление по вния α п вния α п вния в по в по вния в по в по вния в по вния в по вния в по вния в по в п	размера о подош ри η = 1,8 0,717 0,578 0,462 ительнь	, располож ми в плане ве P ₀ = 330	енного ниже подошвы $e 8,0(l) \ge 5,0(b)$ м. $e \ \kappa \Pi a$
19.	кровле сл фундамен Фундамен Дополнит 2z/ 1,2 1,6 2,6 Вычислит в кПа окр	абог та н нт пр ельн b	то подс на 3,0м рямоуго ное дав Значе 1,0 0,606 0,449 0,336 начение ите с то	тилающо (z). ольный, сление по вния а по вния а по вния в по в п	размера о подошри $\eta =$ 1,8 0,717 0,578 0,462 ительнь о до целе	, располож ми в плане ве P ₀ = 330	енного ниже подошвы $e 8,0(l) \ge 5,0(b)$ м. $e \ \kappa \Pi a$
	хровле сл фундамен Фундамен Дополнит 2z/ 1,2 1,6 2,6 Вычислит в кПа окр	абог та н предвинет предвинето п	то подс на 3,0м рямоуго ное дав Значе 1,0 0,606 0,449 0,336 начение ите с то	тилающо (z). ольный, эление по вния а п ви виде в в в в в в в в в в в в в в в в в в в	размера о подош ри η = 1,8 0,717 0,578 0,462 ительнь о до целю	, располож ми в плане ве P ₀ = 330	енного ниже подошвы $e^{2} 8,0(l) \ge 5,0(b)$ м. $e^{2} \times 10^{-2} \mathrm{k}$ Па
	кровле сл фундамен Фундамен Дополнит 2z/ 1,2 1,6 2,6 Вычислит в кПа окр Продемон эквивален Фундамен	абог та н при	то подс на 3,0м рямоуго ное дав Значе 1,0 0,606 0,449 0,336 начение ите с то ируйте ого слоя рямоуго	тилающо (z). Ольный, сление по вния а по вния а по вния а по вния а по вния в по в по вния в по вния в по вния в по в п	размера о подошри $\eta =$ 1,8 0,717 0,578 0,462 ительнь о до цельо оценива кого фуразмера	т, расположения в планеве P ₀ = 330 расположения в планевого расположения в планевими в	е 8,0(<i>l</i>) х 5,0(<i>b</i>) м. кПа ний на глубине 2,4м. Значение фундамента методом г 10,0(<i>l</i>) х 2,5(<i>b</i>) м.
	кровле сл фундамен Фундамен Дополнит 2z/ 1,3 1,6 2,6 Вычислит в кПа окр Продемон эквивален Фундамен Дополнит	абог та н пт преды вельн 2 2 6 9 10 10 10 10 10 10 10 10 10 10 10 10 10	то подс на 3,0м рямоуго ное дав Значе 1,0 0,606 0,449 0,336 начение ите с то ируйте ого слоя рямоуго ное дав	тилающо (z). ольный, пение по вния а п вния в по вний, в пение по вние	размера о подошри $\eta =$ 1,8 0,717 0,578 0,462 ительны о до цельо оценива кого фуразмера о подош	т, расположения в планеве $P_0 = 330$ ми в планевого ить осадку ондамента. На планеве $P_0 = 400$	е 8,0(<i>l</i>) х 5,0(<i>b</i>) м. кПа ний на глубине 2,4м. Значение фундамента методом 10,0(<i>l</i>) х 2,5(<i>b</i>) м. кПа.
	кровле сл фундамен Фундамен Дополнит 22/ 1,2 2,0 Вычислит в кПа окр Продемон эквивален Фундамен Дополнит В основан	абог та н т преды ф	то подс на 3,0м рямоуго ное дав Значе 1,0 0,606 0,449 0,336 начение ите с то пируйте ого слоя рямоуго ное дав залеган	тилающо (z). ольный, пение по вния а п вния а п вния а п вния а п вния вния вния вния вния вния вния вния	размера о подошри $\eta =$ 1,8 0,717 0,578 0,462 ительны о до цельо оценива кого фуразмера о подош	т, расположения в планеве $P_0 = 330$ ми в планевого ить осадку ондамента. На планеве $P_0 = 400$	е 8,0(<i>l</i>) х 5,0(<i>b</i>) м. кПа ний на глубине 2,4м. Значение фундамента методом г 10,0(<i>l</i>) х 2,5(<i>b</i>) м.
	кровле сл фундамен Фундамен Дополнит 2z/ 1,3 1,6 2,6 Вычислит в кПа окр Продемон эквивален Фундамен Дополнит	абог та н т преды ф	то подс на 3,0м рямоуго ное дав Значе 1,0 0,606 0,449 0,336 начение ите с то пируйте ого слоя рямоуго ное дав залеган	тилающо (z). ольный, пение по вния а п вния а п вния а п вния а п вния вния вния вния вния вния вния вния	размера о подошри $\eta =$ 1,8 0,717 0,578 0,462 ительны о до цельо оценива кого фуразмера о подош	т, расположения в планеве $P_0 = 330$ ми в планевого ить осадку ондамента. На планеве $P_0 = 400$	женного ниже подошвы $e 8,0(l) \times 5,0(b)$ м. $e \times 10,0(l) \times 2,5(b)$ м.
	кровле сл фундамен Фундамен Дополнит 22/ 1,2 2,0 Вычислит в кПа окр Продемон эквивален Фундамен Дополнит В основан	абог та н т преды ф	то подс на 3,0м рямоуго ное дав Значе 1,0 0,606 0,449 0,336 начение ите с то ируйте ого слоя рямоуго ное дав залеган 0,3 кПа	тилающо (z). ольный, сление по вния а по вния а по вния а по вния а по вния в по вние по вн	размера о подошри $\eta =$ 1,8 0,717 0,578 0,462 ительны о до цельо оценива кого фуразмера о подош		е 8,0(<i>l</i>) х 5,0(<i>b</i>) м. кПа ний на глубине 2,4м. Значение фундамента методом 10,0(<i>l</i>) х 2,5(<i>b</i>) м. кПа.
	кровле сл фундамен Фундамен Дополнит 22/ 1,2 2,0 Вычислит в кПа окр Продемон эквивален Фундамен Дополнит В основан	абог та н нт пр ельн в е зн е зн е зн пстри истри истри ии з 2*10	то подс на 3,0м рямоуго ное дав Значе 1,0 0,606 0,449 0,336 начение ите с то ируйте ого слоя рямоуго ное дав залеган 0,336 кПа	тилающо (z). ольный, пение по вния а п вния а п вния а п вния а п вния вния вния вния вния вния вния вния	размера о подош ри η = 1,8 0,717 0,578 0,462 ительнь о до цель оценива кого фу размера о подош с коэфф	r , расположения в планеве $P_0 = 330$ их напряжения осадку обращения в планеве $P_0 = 400$ опциентом r	е 8,0(<i>l</i>) х 5,0(<i>b</i>) м. кПа ний на глубине 2,4м. Значение фундамента методом 10,0(<i>l</i>) х 2,5(<i>b</i>) м. кПа.
	кровле сл фундамен Фундамен Дополнит 22/ 1,2 2,0 Вычислит в кПа окр Продемон эквивален Фундамен Дополнит В основан	абог та н т преды ф	то подс на 3,0м рямоуго ное дав Значе 1,0 0,606 0,449 0,336 начение ите с то ируйте ого слоя рямоуго ное дав залеган	тилающо (z). ольный, сление по вния а по вния а по вния а по вния а по вния в по вние по вн	размера о подош ри η = 1,8 0,717 0,578 0,462 ительнь о до цель оценива кого фу размера о подош с коэфф		е 8,0(<i>l</i>) х 5,0(<i>b</i>) м. кПа ний на глубине 2,4м. Значение фундамента методом 10,0(<i>l</i>) х 2,5(<i>b</i>) м. кПа.

2	1,63	1,30
3	1,90	1,54
4	2,09	1,72
5	2,24	1,84
6	2,37	-
7	2,47	-
8	2,56	-
9	2,62	-
10 и более	2,71	2,26

^{*}для максимальной осадки под центром фундамента

Вычислите среднее значение осадки фундамента.

20. Продемонстрируйте умение оценивать осадку фундамента методом эквивалентного слоя для гибкого фундамента.

Фундамент прямоугольный, размерами в плане 15,0(l) х 3(b) м.

Дополнительное давление по подошве $P_0 = 260 \text{ к}\Pi a$.

В основании залегают пески с коэффициентом относительной сжимаемости $m_v = 0.038*10^{-3}~\mathrm{kHa}^{-1}.$

	Значения при η = 0,2		
l/b	Aω*	Αω**	
1	1,20	0,94	
1,5	1,45	1,15	
2	1,63	1,30	
3	1,90	1,54	
4	2,09	1,72	
5	2,24	1,84	
6	2,37	-	
7	2,47	-	
8	2,56	-	
9	2,62	-	
10 и более	2,71	2,26	

^{*}для максимальной осадки под центром фундамента

Вычислите максимальное значение осадки под центром фундамента.

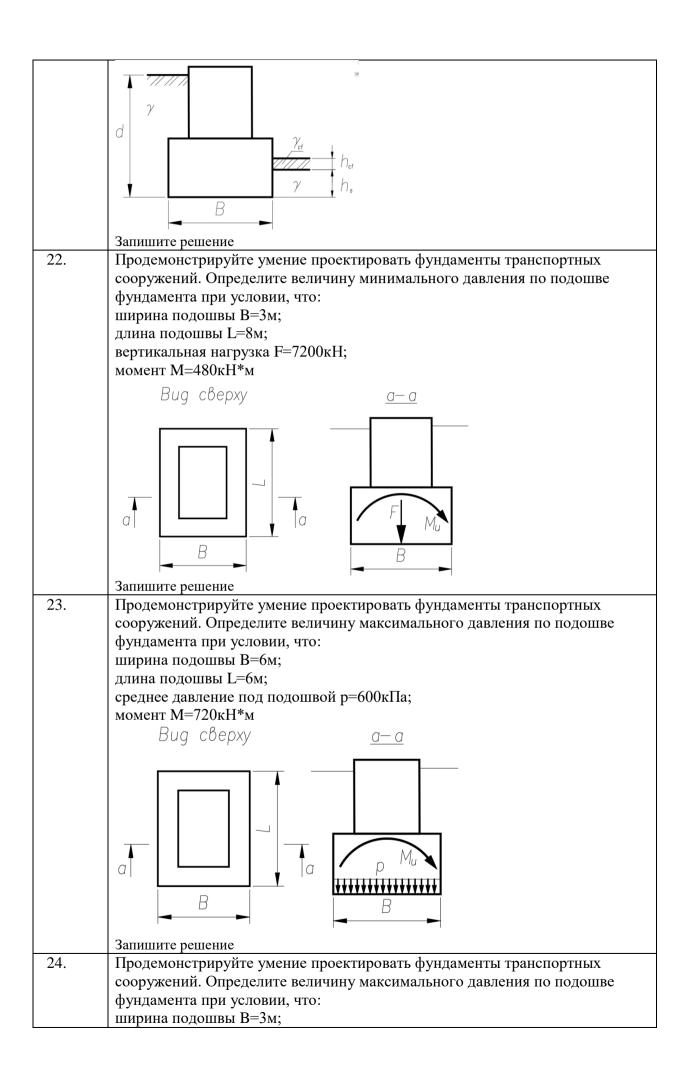
21. Продемонстрируйте умение оценивать принимаемые в расчете параметры фундаментов.

Определите величину приведенной глубины заложения фундамента при наличии подвала при условии, что:

глубина заложения d=3м;

ширина подошвы В=2м;

толщина конструкций пола подавала h_{cf} =0,3м;


мощность слоя грунта под полом подвала h_s=0,6м;

удельный вес грунта $\gamma_{cf} = 16 \text{ кH/m}^3$

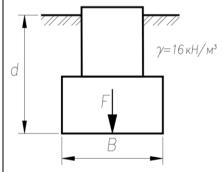
удельный вес ж/б пола подвала $\gamma_{cf} = 24.0 \text{ кH/м}^3$

^{**} для средней осадки фундамента

^{**} для средней осадки фундамента

Запишите решение

25. Продемонстрируйте умение проектировать фундаменты транспортных сооружений. Определите величину дополнительного давления по подошве фундамента при условии, что:


ширина подошвы В=8м;

R

длина подошвы L=12м;

вертикальная нагрузка от фундамента в уровне подошвы F=9600кH; глубина заложения фундамента d=1,5м;

удельный вес грунта выше подошвы $\gamma = 18 \text{ кH/м}^3$

Запишите решение

26. Продемонстрируйте умение оценивать давление грунта на ограждение котлована. Вычислите значение интенсивности активного давления на подпорную стенку на глубине h=10,0 м. Коэффициент активного давления ξ_a = 0,38, удельный вес грунта обратной засыпки составляет $\gamma_{\rm sac}$ = 16 кH/м³. Поверхность засыпки горизонтальна (α = 0), выполнена в уровень с верхом подпорной стенки.

Значение в кПа округлите с точностью до десятых.

27. Продемонстрируйте умение оценивать дополнительные напряжения в массиве грунта.

Фундамент прямоугольный, размерами в плане 3,0(l) х 3,0(b) м. Дополнительное давление по подошве $P_0=450$ кПа

2z/b	Значения α при η = <i>l/b</i>				
	1,0	1,4	1,8		
1,2	0,606	0,682	0,717		
1,6	0,449	0,532	0,578		
2,0	0,336	0,414	0,462		

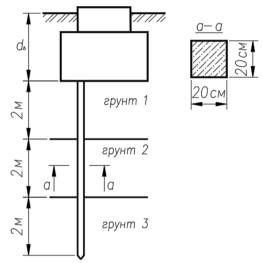
Вычислите значение дополнительных напряжений на глубине 3,0м. Значение

в кПа округлите с точностью до целого

28.

Продемонстрируйте умение проектировать свайные фундаменты.

Определите несущую способность забивной сваи трения по грунту для приведенной расчетной схемы.


Глубина заложения ростверка $d_b = 2$ м. Сечение сваи 20x20см.

Грунт 1 – песок пылеватый средней плотности

Грунт 2 — суглинок мягкопластичный ($I_1 = 0.6$).

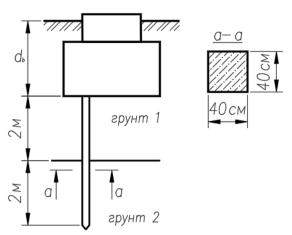
Грунт 3 — глина полутвердая ($I_1 = 0.2$),

Все коэффициенты условий работы примите равными 1,0

Сопроти	Сопротивление под острием сваи				
	R, к	Па			
Глубина	глині	истые	пески		
погруж.	гру	нты	пыле-		
острия, м	$I_1 = 0.20$	$I_1 = 0.6$	ватые		
3	3000	600	1100		
4	3800	700	1250		
5 7	4000	800	1300		
7	4300	850	1400		
10	5000	900	1500		
15	5600	1650	1650		
Сопр	отивлени	е по боков	вой		
-	поверхно				
	f _i , кI	Та			
Глубина	глині	истые	пески		
погруж.	гру	нты	пыле-		
острия, м	$I_1 = 0.20$	$I_1 = 0.6$	ватые		
3	48	14	25		
4	53	16	27		
5	56	17	29		
6	58	18	31		
8	62	19	33		
10	65	19	34		

Вычислите несущую способность сваи.

29. Продемонстрируйте умение проектировать свайные фундаменты.


Определите несущую способность забивной сваи трения по грунту для приведенной расчетной схемы.

Глубина заложения ростверка $d_b = 2$ м. Сечение сваи 40x40см.

Грунт 1 -суглинок полутвердый ($I_1 = 0.2$),

Грунт 2 — глина мягкопластичная ($I_1 = 0.6$).

Все коэффициенты условий работы примите равными 1,0

Сопротивление под острием сваи				
	R, к	Па		
Глубина	глині	истые	пески	
погруж.		нты	пыле-	
острия, м	$I_1 = 0.20$	$I_1 = 0.6$	ватые	
3	3000	600	1100	
4	3800	700	1250	
5	4000	800	1300	
7	4300	850	1400	
10	5000	900	1500	
15	5600	1650	1650	
Сопр	Сопротивление по боковой			
поверхности сваи				
	f _i , κΙ			
Глубина	глині	истые	пески	
погруж.	гру	грунты		
острия, м	$I_1 = 0.20$	$I_1 = 0.6$	ватые	
3	48	14	25	
4	53	16	27	
5	56	17	29	
_	7 0	1.0	0.1	

Вычислите несущую способность сваи.

30. Продемонстрируйте умение проектировать свайные фундаменты.

8

10

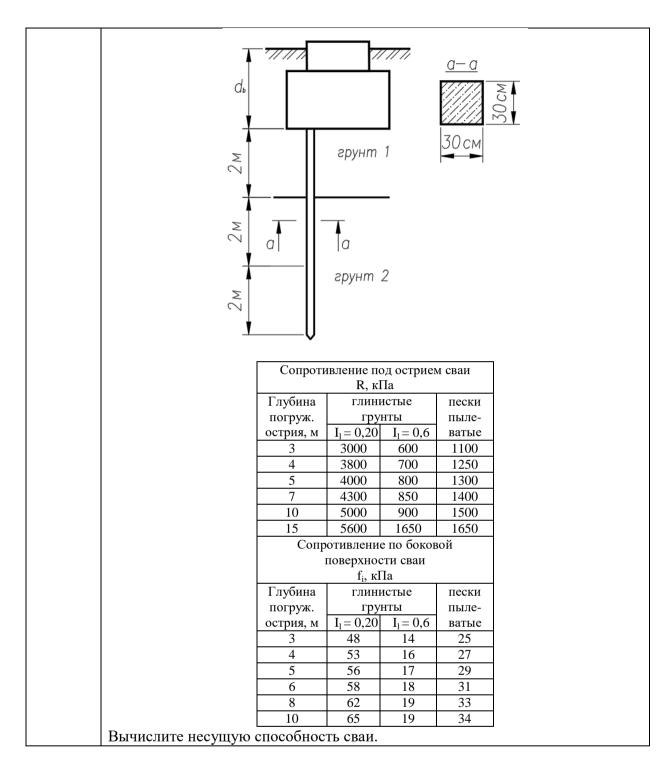
Определите несущую способность забивной сваи трения по грунту для приведенной расчетной схемы.

62

65

19

19


33

Глубина заложения ростверка $d_b = 4$ м. Сечение сваи 30х30см.

Грунт 1 – песок пылеватый средней плотности,

Грунт 2 — суглинок мягкопластичный (I_1 = 0,6).

Все коэффициенты условий работы примите равными 1,0

Учебное пособие по практическим занятиям размещено в электронной информационно-образовательной среде ПГУПС (sdo.pgups.ru) в разделе дисциплины.

Материалы для промежуточной аттестации

Перечень вопросов к экзамену

№п/п	Вопросы	Индикаторы
		достижения
		компетенций
1.	Какая последовательность проектирования оснований и	ПК-1.2.1,
	фундаментов?	ПК-1.2.6
2.	Когда необходима оценка работы оснований по I	

	0
2	предельному состоянию?
3.	По какому принципу фундаменты можно подразделить на
	фундаменты мелкого и глубокого заложения?
4.	Какие расчетные схемы используются для расчета
	деформаций оснований?
5.	Влияет ли жесткость здания на неравномерность осадок?
6.	Какие виды деформации и смещения сооружений вы знаете?
7.	Как производится выбор основания и фундаментов?
8.	Отчего зависит глубина заложения фундамента?
9.	Как определяется нормативная глубина сезонного
	промерзания грунта?
10.	В чем отличие центрально и внецентренно нагруженного
	фундамента?
11.	В чем заключается сущность расчета по деформациям?
12.	На какие виды подразделяются деформации оснований и
	сооружений?
13.	Какие деформации являются наиболее опасными для
	сооружений?
14.	Как рассчитать осадку основания методом послойного
	суммирования?
15.	Как рассчитать осадку основания методом эквивалентного
	слоя грунта?
16.	Можно ли использовать формулу Ф. Шлейхера для
	определения осадки основания?
17.	Что такое расчетное сопротивление грунта основания?
18.	Как определить ширину подошвы центрально нагруженного
	фундамента?
19.	Как определить ширину подошвы внецентренно
	нагруженного фундамента?
20.	На что влияет наличие в основании слабого слоя грунта?
21.	Для чего выполняется расчет основания по несущей
	способности?
22.	В чем сущность расчета основания по несущей способности?
23.	Как определяется предельное сопротивление скального
	основания?
24.	Как определяется сила предельного сопротивления
	нескальных оснований?
25.	Как произвести расчет фундамента на сдвиг по его подошве?
26.	Как выбрать вид свай и вид свайного фундамента?
27.	По каким признакам классифицируются сваи?
28.	Как различают сваи по характеру работы в грунте?
29.	Как изготовляются набивные сваи?
30.	Как можно подразделить буронабивные сваи?
31.	Как изготовляются буронабивные сваи?
32.	Как устраивается уширенная пята буронабивной сваи?
33.	Что такое отказ сваи и чем отличается ложный от истинного?
34.	Имеются ли различия в характере деформации грунта в
	основании сваи и основании свайного фундамента?
	17
35.	Какои характер имеет напряженно-леформированное
35.	Какой характер имеет напряженно-деформированное состояние грунта вокруг сваи?

	свайных фундаментов и их оснований?
37.	Какие расстояния рекомендуются между сваями в
	фундаменте?
38.	Как определяется несущая способность сваи-стойки?
39.	Как определяется несущая способность висячей сваи?
40.	От чего зависит сопротивление выдергиваемой сваи?
41.	Что такое отрицательное трение грунта, окружающего сваю?
42.	В чем заключается динамический способ определения
	несущей способности свай?
43.	В чем заключается статический метод испытания свай?
44.	В чем заключается метод статического зондирования для
	определения несущей способности свай?
45.	Как определить число свай в свайном фундаменте?
46.	Каким образом рассчитываются осадки свайных
	фундаментов?
47.	Что представляет собой грунтовая подушка и для чего она
	делается?
48.	Каким образом производится усиление основания с
	помощью шпунтового ограждения?
49.	Для каких грунтов эффективно уплотнение трамбованием?
50.	Как изготовляются песчаные сваи, и рассчитывается
	фундамент из них?
51.	Что представляет собой силикатизация грунтов, и в каких
	грунтах ее применяют?
52.	Что собой представляет опускной колодец и как
	осуществляется погружение опускного колодца?
53.	На какие усилия рассчитывается опускной колодец?
54.	Что собой представляет кессон, и как производятся
	кессонные работы?
55.	Что представляет собой конструкция «стена в грунте» и для
	чего она применяется?
56.	Какие грунты относят к структурно-неустойчивым?
57.	Как влияет оттаивание мерзлых грунтов на их сжимаемость?
58.	Какие существуют принципы использования мерзлых
	грунтов в качестве оснований?
59.	Какие мероприятия применяются для грунтов при
	строительстве на них по первому принципу?
60.	С чем связано морозное пучение грунта?
61.	По какому предельному состоянию рассчитываются
	фундаменты на основаниях, проектируемые по І принципу и
	по II принципу?
62.	В чем особенность строительства сооружений на лессовых
	просадочных грунта?
63.	В чем заключается принцип строительства на просадочных
	грунтах?
64.	Каким путем можно устранить просадочные свойства
	грунтов?
65.	На какие три категории можно подразделить грунты по их

3. Описание показателей и критериев оценивания индикаторов достижения компетенций, описание шкал оценивания

Показатель оценивания – описание оцениваемых основных параметров процесса или результата деятельности.

Критерий оценивания – признак, на основании которого проводится оценка по показателю.

Шкала оценивания – порядок преобразования оцениваемых параметров процесса или результата деятельности в баллы.

Показатели, критерии и шкала оценивания заданий текущего контроля приведены в таблице 3.1.

Таблица 3.1

№ п/п	Материалы, необходимые для оценки индикатора достижения компетенции	Показатель оценивания	Критерии оценивания	Шкала оценивания
		Соответствие методике	Соответствует Частично соответствует	3
		выполнения	Не соответствует	0
1	Практические занятия №№1-11	Правильность оформления отчета по работе	Все позиции отчета отражены, верно сформулирована цель, сделаны правильные выводы по работе	2
		1	Отсутствует одна или все позиции отчета	0
		ИТОГО максим баллов	5	
		правильные	5 правильны ответов	15
		ответы на	4-3 правильных ответ	5
3	Тестовые задания №1-30	тестовые вопросы (5 вопросов)	2 и менее правильных ответа	0
		ИТОГО максим баллов	15	
ИТО	ГО максимальное количест	во баллов		70

4. Методические материалы, определяющие процедуры оценивания индикаторов достижения компетенций

Процедура оценивания индикаторов достижения компетенций представлена в таблице 4.1.

Формирование рейтинговой оценки по дисциплине

Таблица 4.1.

Вид контроля	Материалы, необходимые для оценки индикатора достижения компетенции	Максимальное количество баллов в процессе оценивания	Процедура оценивания		
1. Текущий контроль успеваемости*	Практическое занятие №№1-11, Тестовые задания №№1-30	70	Количество баллов определяется в соответствии с таблицей 3.1 Допуск к экзамену ≥ 50 баллов		
2. Промежуточная аттестация*	Перечень вопросов к экзамену	30	 получены полные ответы на вопросы – 2530 баллов; получены достаточно полные ответы на вопросы – 2024 балла; получены неполные ответы на вопросы или часть вопросов – 1119 баллов; не получены ответы на вопросы или вопросы или вопросы не раскрыты – 010 баллов. 		
	ИТОГО	100	•		
3. Итоговая оценка	«Отлично» - 86-100 баллов «Хорошо» - 75-85 баллов «Удовлетворительно» - 60-74 баллов «Неудовлетворительно» - менее 59 баллов (вкл.)				

^{*}Обучающиеся имеют возможность пройти тестовые задания текущего контроля успеваемости и промежуточной аттестации в Центре тестирования университета.

Процедура проведения экзамена осуществляется в форме (письменного ответа на вопросы билета).

Билет на экзамен содержит вопросы (из перечня вопросов промежуточной аттестации п.2) и иные задания: $(3a\partial auu\ u\ m.\partial.)$).

Тестовые задания промежуточной аттестации оцениваются по процедуре оценивания таблицы 3.1.

5. Оценочные средства для диагностической работы по результатам освоения дисциплины

Проверка остаточных знаний обучающихся по дисциплине ведется с помощью оценочных материалов текущего и промежуточного контроля по проверке знаний, умений, навыков и (или) опыта деятельности, характеризующих индикаторы достижения компетенций.

Оценочные задания для формирования диагностической работы по результатам освоения дисциплины (модуля) приведены в таблице

Таблица 5.1

5.1

Индикатор достижения компетенции	Содержание задания	Варианты ответа на вопросы тестовых заданий (для заданий закрытого типа)	Эталон ответа
ПК-1 Обеспечение проц	есса подготовки проектной продукции по автомобильн	ным дорогам необходимыми исходны	ыми данными
ПК -1.2.1. Умеет применять требования руководящих, нормативнотехнических и методических документов, регламентирующих выполнение проектноизыскательских и строительномонтажных работ при выполнении расчетной части проектной продукции по отдельным узлам и	Продемонстрируйте умение выбирать надежный слой грунта основания для передачи на него нагрузки от здания или сооружение — укажите состояние песчаных и глинистых грунтов, в котором они считаются ненадежным основанием Продемонстрируйте умение давать оценку напряжений в массиве грунта. Вычислите значение природных напряжений на кровле водоупорного слоя грунта на глубине 4,0 м, если выше расположен слой песка (мощностью 4м) с удельным весом γ =19,2 кН/м³, удельным весом песка с учетом взвешивающего действия воды γ sb=9,5 кН/м³. Уровень грунтовых вод расположен на глубине 1,5 м. Значение округлите с точностью до десятых.		пески в рыхлом состоянии, глинистые грунты в текучем состоянии $\sigma_{zg.W} = h_1 \cdot \gamma + h_2 \cdot \gamma_{sb} + h_w \cdot 10$ где h_1 — мощность грунта выше уровня грунтовых вод; h_2 — мощность грунта ниже уровня грунтовых вод h_w — высота столба воды (грунтовых вод) $\sigma_{zg.W} = 1,5 \cdot 19,2 + 2,5 \cdot 9,5 + 2,5 \cdot 10 =$
элементам			= 77,6 кПа Ответ: 77,6кПа
автомобильных дорог и по автомобильным дорогам в целом и (или) оформление ведомостей объемов работ	Продемонстрируйте умение давать оценку напряжений в массиве грунта. Вычислите значение природных напряжений на кровле третьего слоя грунта, если первый слой грунта представлен песком (мощностью 5м) с удельным весом $\gamma_1=18.8 \text{ кH/m}^3$, а второй слой грунта представлен суглинком		$\sigma_{zg.3} = h_1 \cdot \gamma_1 + h_2 \cdot \gamma_2$ где h_1 – мощность первого слоя грунта; h_2 – мощность второго слоя грунта

`	, · ·		сом γ ₂ =19,5 кН/		$\sigma_{zg.3} = 5 \cdot 18.8 + 3 \cdot 19.5 =$
			начение округл	лите с	= 152,5 κΠa
	остью до десят				Ответ: 152,5кПа
_	1 1 0	•	еделять мощно	ость	Отношение длины к
	паемого слоя по	•	,		ширине фундамента
		гольный, раз	мерами в план	e 9,0(<i>l</i>)	составляет 9,0/3,0=3
x 3,0	(<i>b</i>) м.	T		_	Тогда коэффициент
	1/1	Значения	я при η = 0,2	<u> </u>	$A\omega^* = 1,90.$
	l/b	Aω*	Αω**		Мощность
	1	1,20	0,94		эквивалентного слоя: $h_3 = b \ A \omega^{**} =$
	1,5	1,45	1,15		=3.0*1.9=5.7M
	2	1,63	1,30		Глубина сжимаемой
	3	1,90	1,54	7	толщи составит:
	4	2,09	1,72		$H_c = 2h_9 = 2*5,7 = 11,4_M$
	5	2,24	1,84		Ответ: 11,4м
	6	2,37	-		Omocini. 11,4m
	7	2,47	-		
	8	2,56	-		
	9	2,62	-		
	10 и более	2,71	2,26		
	*для максимали	ьной осадки под	д центром		
	фундамента ** для средней	осолин фунцом	(ALITO		
Опре	для средней сделите мощно				
	емонстрируйт		Отношение длины к		
	аемого слоя по			ширине более 10.	
		•	ной в основани	Тогда коэффициент	
12,0(<u>b)м. Длина нас</u>	ыпи 300 (<i>l</i>)м	[.	_	$A\omega^* = 2,71.$
		Значения	я при η = 0,2		Мощность
	l/b	Aω*	Αω**		эквивалентного слоя:
		<u> </u>		_	$h_9 = b A \omega^{**} =$

		1	1,20	0,94		=	12,0*2,71 = 32,5M
		1,5	1,45	1,15			лубина сжимаемой
		2	1,63	1,30			олщи составит:
		3	1,90	1,54		$\mid H_0 \mid$	$T_c = 2h_9 = 2*32, 5=65M$
		4	2,09	1,72		0.	твет: 65м
		5	2,24	1,84		Oi	твет. оэм
		6	2,37	-			
		7	2,47	_			
		8	2,56	_			
		9	2,62	-			
		10 и более	2,71	2,26			
		*для максималь	ной осадки под	ц центром			
		фундамента		_			
		** для средней с					
<u> </u>		елите мощнос					21)
				уировать свайни зможных рассто			асстояние в осях от 3d до d, где d – это диаметр
		осями свай сва			ини		руглой или сторона сечения
							ризматической свай.
	•			оценку напряже			$\sigma_{zg.W} = h_1 \cdot \gamma + h_2 \cdot \gamma_{sb} +$
		* *		ние природных			$+h_w\cdot 10$
				ного слоя грун			$0e\ h_1$ — мощность грунта ыше уровня грунтовых вод;
				тожен слой пес сом γ=18,0 кН/м			ыше уровня грунтовых воо, — мощность грунта ниже
	`	, •		ом ү-16,0 кп/к взвешивающег			ровня грунтовых вод
							у – высота столба воды
		іствия воды γ _{sb} =8,9 кН/м ³ . Уровень грунтовых д расположен на глубине 2,0 м. Значение					рунтовых вод)
	-	ите с точност	•			σ_{i}	$r_{zg.W} = 2.0 \cdot 18.0 + 3.0 \cdot 8.9$
	1 2		, , , ,				$+3.0 \cdot 10 =$
							= 92,7 кПа твет: 92,7кПа
-	Пролег	монстрируйте	умение лав	ать опенку			$\frac{\sigma_{zg,3} = h_1 \cdot \gamma_1 + h_2 \cdot \gamma_2 + \dots}{\sigma_{zg,3} = h_1 \cdot \gamma_1 + h_2 \cdot \gamma_2 + \dots}$
	троде	шопотрирунт с	умение дав	ать оценку			zy.s "1 /1 ' "2 /2 '

напряжений в массиве грунта. Вычислите значение природных напряжений на кровле четвертого слоя грунта, если первый слой грунта представлен песком (мощностью 2м) с удельным весом $\gamma_1 = 18,0$ $\kappa H/m^3$, второй слой грунта представлен суглинком (мощностью 2м) с удельным весом $\gamma_2 = 20,1 \text{ кH/m}^3$, а третий слой грунта представлен глиной (мощностью 4м) с удельным весом $\gamma_2 = 20.8 \text{ кH/м}^3$ Грунтовые воды отсутствуют. Значение округлите с

точностью до десятых.

Продемонстрируйте умение определять мощность

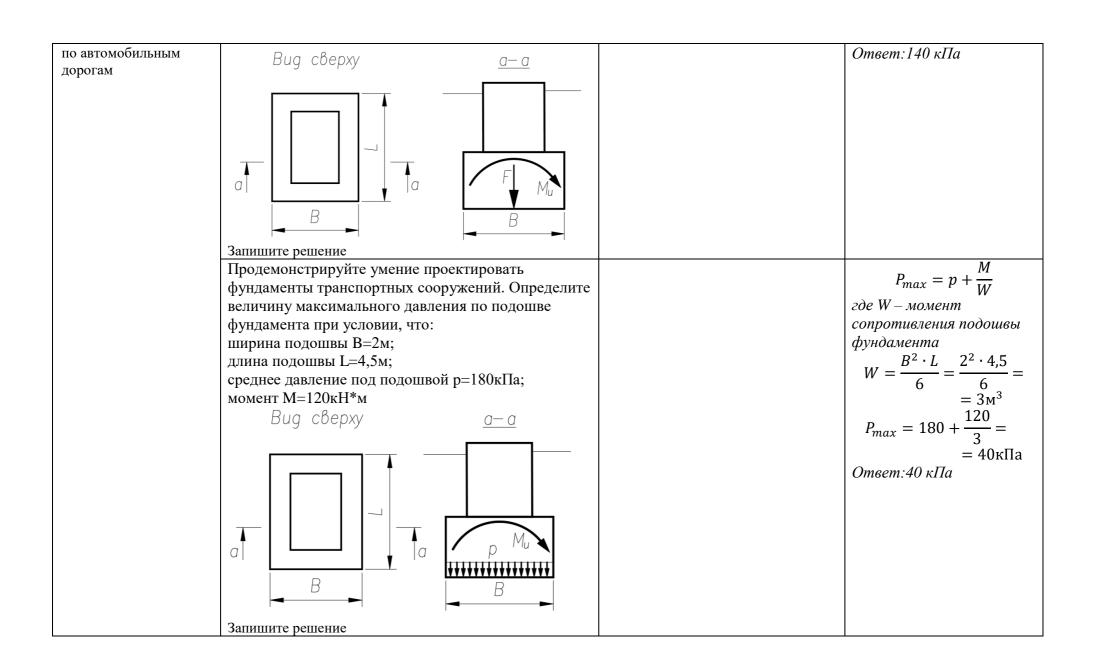
сжимаемого слоя по методу Н.А. Цитовича. Фундамент прямоугольный, размерами в плане

 $16,0(l) \times 4,0(b) \text{ M}.$

	Значения при η = 0,2				
l/b	Αω*	Αω**			
1	1,20	0,94			
1,5	1,45	1,15			
2	1,63	1,30			
3	1,90	1,54			
4	2,09	1,72			
5	2,24	1,84			
6	2,37	-			
7	2,47	-			
8	2,56	-			
9	2,62	-			
10 и более	2,71	2,26			

^{*}для максимальной осадки под центром фундамента

Определите мощность сжимаемой толщи

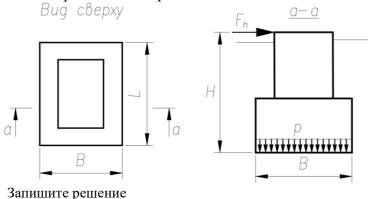

 $+h_3 \cdot \gamma_3$ где h_1 – мощность первого слоя грунта; h_2 – мощность второго слоя грунта h_3 — мощность третьего слоя грунта $\sigma_{zg.3} = 2 \cdot 18,0 + 2 \cdot 20,1 +$ $+4 \cdot 20.8 = 159.4 \kappa \Pi a$ Ответ: 159,4кПа

Отношение длины к ширине фундамента составляет 16,0/4,0=4 Тогда коэффициент $A\omega^* = 2.09.$ Мошность эквивалентного слоя: $h_0 = b A \omega^{**} =$ =4.0*2.09 = 8.36_M Глубина сжимаемой толщи составит: $H_c = 2h_9 = 2*8,36 = 16,72M$

Ответ: 16,72м

^{**} для средней осадки фундамента

	сжим Рассм	Продемонстрируйте умение определять мощность сжимаемого слоя по методу Н.А. Цитовича. Рассматривается насыпь с шириной в основании 10,0(b)м. Длина насыпи 70 (l)м.				Отношение длины к ширине составляет 70,0/10,0=7. Тогда коэффициент
		Значения при η = 0,2				$A\omega^* = 2.47.$
		l/b	Αω*	Αω**		Мощность
		1	1,20	0,94		эквивалентного слоя: $h_3 = b A \omega^{**} =$
		1,5	1,45	1,15		$n_9 = 0.400 \cdot 1 = 10,0*2,47 = 24,7M$
		2	1,63	1,30		Глубина сжимаемой
		3	1,90	1,54		толщи составит:
		4	2,09	1,72		$H_c = 2h_9 = 2*24,7 = 49,4M$
		5	2,24	1,84		Ответ: 49,4м
		6	2,37	-		Ответ: 49,4м
		7	2,47	-		
		8	2,56	-		
		9	2,62	-		
		10 и более	2,71	2,26		
		*для максималь фундамента ** для средней ф				
		делите мощнос				
ПК-1.2.6. Умеет анализировать информацию,	фунд	Продемонстрируйте умение проектировать фундаменты транспортных сооружений. Определите величину минимального давления по подошве				$P_{min} = rac{F}{B \cdot L} - rac{M}{W}$ где W — момент
необходимую для выполнения и оформления расчетов фундамента при условии, что: ширина подошвы B=3м;						сопротивления подошвы фундамента
узлов и элементов автомобильных дорог, при подготовке	верти	а подошвы L=4 икальная нагруз энт M=240кН*м	вка F=2160к	Н;		$W = \frac{B^2 \cdot L}{6} = \frac{3^2 \cdot 4}{6} = 6 \text{ m}^3$ $P_{max} = \frac{2160}{3 \cdot 4} - \frac{240}{6} = \frac{1}{6}$
проектной продукции						$3 \cdot 4$ 6 = 140κΠa



Продемонстрируйте умение проектировать фундаменты транспортных сооружений. Определите величину максимального давления по подошве фундамента при условии, что: ширина подошвы В=3м;

длина подошвы L=6м;

среднее давление под подошвой р=270кПа; горизонтальная сила Fh=150кH

высота приложения горизонтальной силы Н=3м

 $P_{max} = p + \frac{M}{M}$

где W – момент сопротивления подошвы фундамента

$$W = \frac{B^2 \cdot L}{6} = \frac{3^2 \cdot 6}{6} = 9 \text{ M}^3$$

M – момент, создаваемый горизонтальной силой

$$M = F_h \cdot H = 150 \cdot 3 =$$

= 450кН · м

$$P_{max} = 270 + \frac{450}{9} =$$
= 320 k Πa

Ответ:320 кПа

Продемонстрируйте умение проектировать фундаменты транспортных сооружений. Определите величину дополнительного давления по подошве фундамента при условии, что:

ширина подошвы В=3м;

длина подошвы L=5м;

вертикальная нагрузкаот фундамента в уровне подошвы F=3000кН;

глубина заложения фундамента d=2,5м; удельный вес грунта выше подошвы γ=16 кH/м³

 $P_0 = P - \sigma_{zq,0}$ где Р – среднее давление по подошве фундамента

$$P = \frac{F}{B \cdot L} = \frac{3000}{3 \cdot 5} =$$
$$= 200 \kappa \Pi a$$

 $\sigma_{za,0}$ – напряжения от собственного веса грунта в уровне подошвы фундамента

$$\sigma_{zg.0} = \gamma \cdot d = 16 \cdot 2,5 =$$

$$= 40 \text{κ}\Pi a$$
 $P_0 = 200 - 40 = 160 \text{κ}\Pi a$

	Ответ:160 кПа
γ=16 κH/м³	
F B	
Запишите решение	
Продемонстрируйте умение оценивать давление	$e_a = h \cdot \xi a \cdot \gamma_{3ac} =$
грунта на ограждение котлована. Вычислите	$= 4.0 \cdot 0.45 \cdot 18.0 =$
значение интенсивности активного давления на	= 32,4 кПа
подпорную стенку на глубине h=4,0 м.	Ответ: 32,4кПа
Коэффициент активного давления $\xi_a = 0,45$,	
удельный вес грунта обратной засыпки составляет	
$\gamma_{\text{3ac}} = 18 \text{ кH/m}^3$. Поверхность засыпки горизонтальна	
$(\alpha = 0)$, выполнена в уровень с верхом подпорной	
стенки.	
Значение в кПа округлите с точностью до десятых.	((0)
Продемонстрируйте умение оценивать давление грунта на ограждение котлована. Вычислите	$e_{\pi} = d \cdot \gamma_{3ac} \cdot tg^{2} \left(45 + \frac{\varphi}{2} \right)$ $= 2.0 \cdot 17.8 \cdot tg^{2} \left(45 + \frac{30}{2} \right)$
значение интенсивности пассивного давления на	$\frac{2}{30}$
подпорную стенку в уровне подошвы фундамента	$= 2.0 \cdot 17.8 \cdot tg^{2} \left(45 + \frac{1}{2}\right)$
подпорной стенку в уровне подошью фундамента подпорной стенки. Удельный вес грунта обратной	= 11,9 кПа
засынки составляет $\gamma_{\text{зас}} = 17.8 \text{ кH/м}^3$, угол	Ответ: 11,9кПа
внутреннего трения грунта $\phi = 30^{0}$. Глубина	
заложения подошвы фундамента составляет d=2,0м.	
Значение в кПа округлите с точностью до десятых.	
Продемонстрируйте умение оценивать	При соотношении
дополнительные напряжения в массиве грунта.	l/b = 4,2/3,0 = 1,4 u
Фундамент прямоугольный, размерами в плане $4,2(l)$	соотношении
х 3,0(b) м. Дополнительное давление по подошве	2z/b = 2*2,4/3,0 = 1,6

P ₀ =	= 250 кП	a			κ оэ ϕ ϕ ициент $\alpha=0,532$
	2z/b	Значе	ения α п <i>l/b</i>	ри η =	Дополнительные напряжения составят
		1,0	1,4	1,8	$\sigma_{zp.i} = P_0 \cdot \alpha = 250 \cdot 0,532 = 133$ κ Π a
	1,2	0,606	0,682	0,717	Ответ: 133 кПа
	1,6	0,449	0,532	0,578	
	2,0	0,336	0,414	0,462	
		значение			
	•	2,4м. Зна до целого		кНа окру	
дог под под Фу х 5	олнител стилают ошвы ф ндамент		ряжения, распол га на 3,0 гольный,	я на крон поженног м (z). размера цавление	При соотношении $l/b = 9,0/5,0 = 1,8$ и соотношении $2z/b = 2*3,0/5,0 = 1,2$ коэффициент $\alpha = 0,717$ Дополнительные напряжения составят $\sigma_{zp.i} = P_0 \cdot \alpha = 330 \cdot 0,717 = 237$ кПа Ответ: 237 кПа
	1,2	0,606	0,682	0,717	
	1,6	0,449	0,532	0,578	
	2,0	0,336	0,414	0,462	
Вы	числите	значение	дополн		
	•	2,4м. Зна цо целого			
Пр	одемонст	грируйте	умение	оценива	Отношение длины к
1 -		методом		лентного	ширине фундамента
ГИС	кого фуг	ндамента	•		составляет 10/2,5=4

Фундамент прямоугольный, размерами в плане $10,0(l) \times 2,5(b)$ м. Дополнительное давление по подошве $P_0 = 400 \text{ к}\Pi a$.

В основании залегают пески с коэффициентом относительной сжимаемости $m_v = 0.042*10^{-3} \ \mbox{к}\Pi\mbox{a}^{-1}$.

	Значения	я при η = 0,2
l/b	Aω*	Αω**
1	1,20	0,94
1,5	1,45	1,15
2	1,63	1,30
3	1,90	1,54
4	2,09	1,72
5	2,24	1,84
6	2,37	-
7	2,47	-
8	2,56	-
9	2,62	-
10 и более	2,71	2,26

^{*}для максимальной осадки под центром фундамента

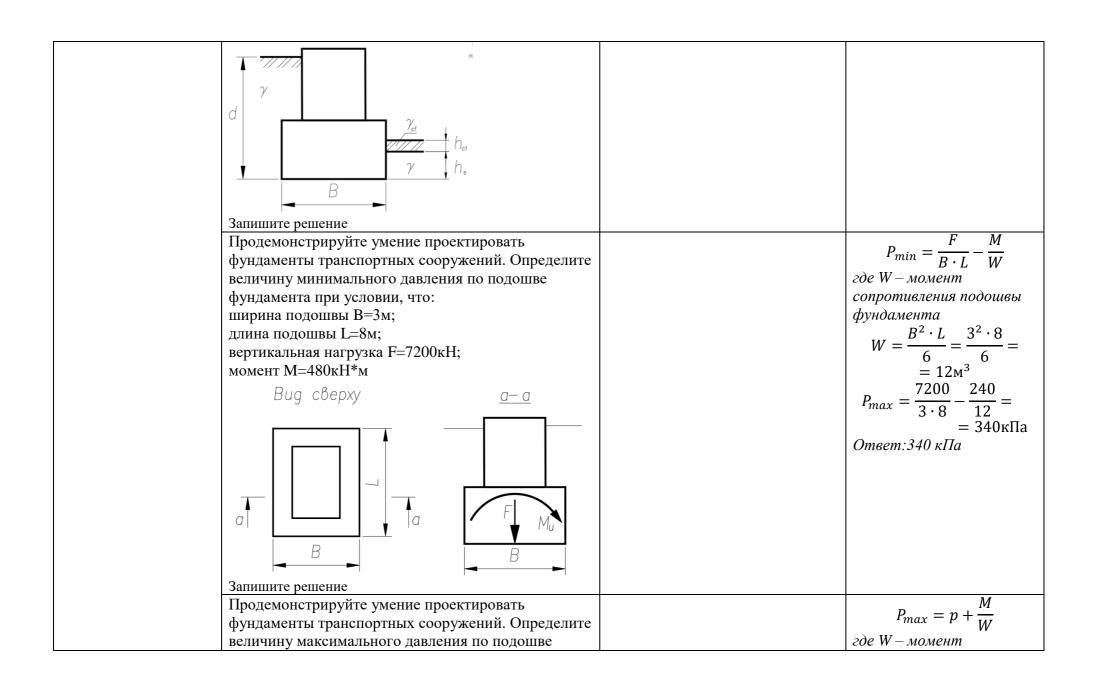
Вычислите среднее значение осадки фундамента.

Продемонстрируйте умение оценивать осадку фундамента методом эквивалентного слоя для гибкого фундамента.

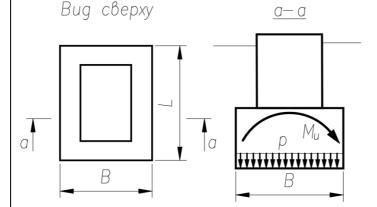
Фундамент прямоугольный, размерами в плане $15,0(l) \times 3(b)$ м. Дополнительное давление по подошве $P_0 = 260 \text{ к}\Pi a$.

В основании залегают пески с коэффициентом относительной сжимаемости $m_v = 0.038*10^{-3}~{\rm k\Pi a}^{-1}.$

l/b	Значения при η = 0,2
-----	----------------------


Тогда коэффициент $A\omega^{**}=1,72.$ Мощность эквивалентного слоя: h_9 =b $A\omega^{**}==2,5*1,72=4,3м$ Средняя осадка фундамента составит: $s=m_v\cdot h_9\cdot p_0==0,042\cdot 10^{-3}\cdot 4,3\cdot 400=0,072$ м

Ответ: 0,072 м


Отношение длины к ширине фундамента составляет 15/3=5 Тогда коэффициент $A\omega^*=1,84$. Мощность эквивалентного слоя: h_9 =b $A\omega^*==3*1,84=5,5м$ Средняя осадка

^{**} для средней осадки фундамента

		Αω*	Αω**		фундамента составит.
	1	1,20	0,94		$s = m_v \cdot h_9 \cdot p_0 =$
	1,5	1,45	1,15		$= 0.038 \cdot 10^{-3} \cdot 5.5 \cdot 26$
	2	1,63	1,30		= 0.054r
	3	1,90	1,54		Ответ: 0,054 м
	4	2,09	1,72		
		· · · · · · · · · · · · · · · · · · ·			
	5	2,24	1,84		
	6	2,37	-		
	7	2,47	-		
	8	2,56	-		
	9	2,62	-		
	10 и более	2,71	2,26		
	*для максималь	ной осадки под	д центром		
	фундамента				
	** для средней	осадки фундам	ента		
	ислите максима		ние осадки под		
	гром фундамент				26
_	демонстрируйт	•			$d_1 = h_s + h_{cf} \cdot \frac{\gamma_{cf}}{\gamma} = 0.6 + 0.3 \cdot \frac{24}{16} = 1.09$
	нимаемые в рас				γ
_	еделите величи	• •			$= 0.6 + 0.3 \cdot \frac{24}{16} = 1.09$
	жения фундаме	нта при нали	ичии подвала п <u>ј</u>		Пответ: 1,05м
	вии, что: бина заложения	d-3w:			Ответ. 1,03м
	ина заложения ина подошвы В				
	ина подошвы в цина конструкц		авапа ћ.∉=0 3м∙		
	ципа копструкц цность слоя грун			r:	
уле.	вный вес грунт	$a \gamma_{cf} = 16 \text{ kHz}$	м ³	-,	
			$\gamma_{\rm cf} = 24.0 \text{ kH/m}^3$		

фундамента при условии, что: ширина подошвы B=6м; длина подошвы L=6м; среднее давление под подошвой p=600кПа; момент M=720кН*м

сопротивления подошвы фундамента

$$W = \frac{B^2 \cdot L}{6} = \frac{6^2 \cdot 6}{6} =$$

$$= 36 \text{ M}^3$$

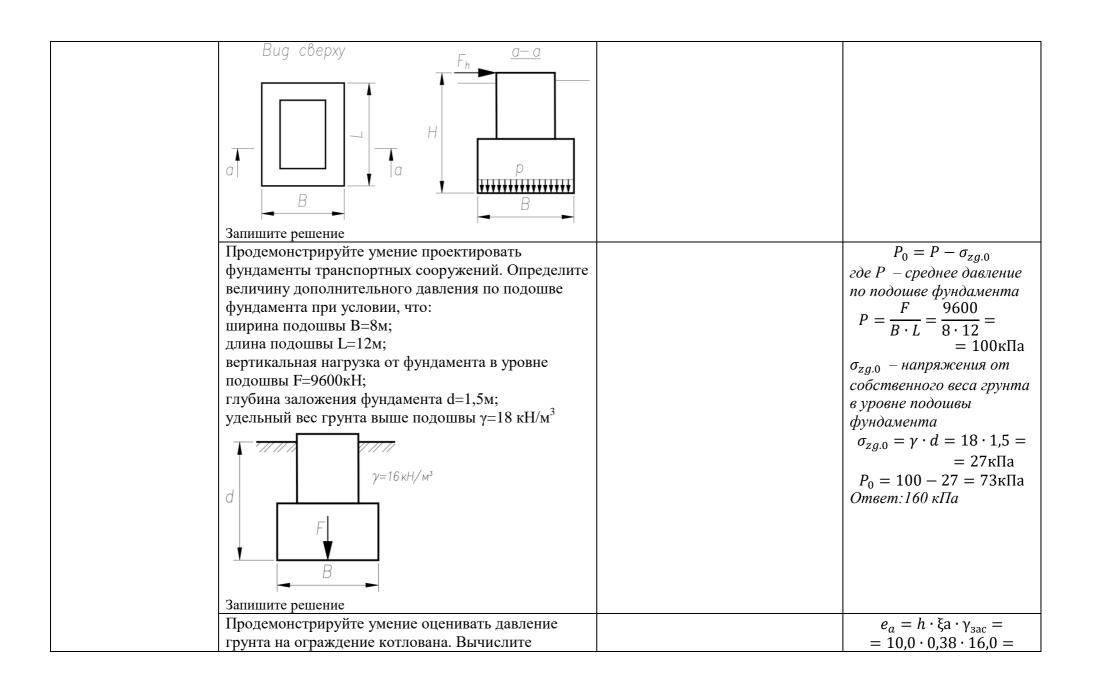
$$P_{max} = 600 + \frac{720}{36} =$$

$$= 620 \text{ kHz}$$

Ответ:620 кПа

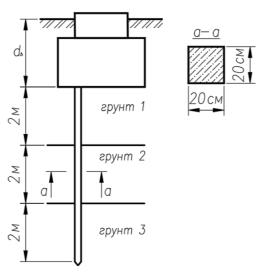
Запишите решение

Продемонстрируйте умение проектировать фундаменты транспортных сооружений. Определите величину максимального давления по подошве фундамента при условии, что: ширина подошвы B=3м; длина подошвы L=10м; среднее давление под подошвой р=50кПа; горизонтальная сила Fh=30кН высота приложения горизонтальной силы H=2м


$$P_{max} = p + \frac{M}{W}$$

где W – момент сопротивления подошвы фундамента

$$W = \frac{B^2 \cdot L}{6} = \frac{3^2 \cdot 10}{6} = 15 \text{m}^3$$


M – момент, создаваемый горизонтальной силой

$$M = F_h \cdot H = 30 \cdot 2 =$$
 $= 60 \text{кH} \cdot \text{м}$
 $P_{max} = 50 + \frac{60}{15} =$
 $= 54 \text{к} \Pi a$
 $Omsem: 54 \text{ к} \Pi a$

подпе Коэф удели γ _{зас} = (α = 0 стени Значе Прод допо. Фунд х 3,00	орную фицие вный в кН (о), вып ки. ение в емонстител (амент	стенку н нт актив ес грунта м ³ . Пове олнена в кПа окру грируйте ьные наг прямоуг Цополнит	а глубин ного дав а обратно рхность уровень углите с умение пряжения ольный,	ивного д не $h=10$,0 ления ξ_a ой засыпки в с верхол точность оценива я в масси размера цавление		$= 60,8 \ \kappa\Pi a$ $Om вет: 60,8 \kappa\Pi a$ $Ilpu coom ношении$ $1/b = 3,0/3,0 = 1,0 u$ $coom нoшении$ $2z/b = 2*3,0/3,0 = 2,0$ $\kappa o \ni \phi \phi u u e h m \alpha = 0,33$
	2z/b		ения α п <i>l/b</i>	ри η =		Дополнительные напряжения составят
		1,0	1,4	1,8		$\sigma_{zp.i} = P_0 \cdot \alpha = 450 \cdot $ $\cdot 0.336 = 151$ κΠα
	1,2	0,606	0,682	0,717		Ответ: 151 кПа
	1,6	0,449	0,532	0,578		
	2,0	0,336	0,414	0,462		
на гл	убине		чение в	ительны кПа окру	i	
_			умение	проекти	ie	Несущая способность
	аментн		ио способ	SHOCKL BE		сваи трения по грунту вычисляется как:
				бность за ценной ра	ты.	$F = \gamma_c(\gamma_{cR} \cdot R \cdot A -$
	ина зал			$ka d_b = 2n$		$+u \cdot \sum_{i} \gamma_{cf} \cdot f_i \cdot h_i$
		есок пыл	еватый с	ередней і		здесь γ_{c} , $\overline{\gamma_{cR}}$ и γ_{cf} —
Грун	т 2 – су	тлинок і	мягкопла	астичныі		коэффициенты услови
Грун	т 3 — гл	ина пол	утвердая	$I_1 = 0,2),$		работы

Все коэффициенты условий работы примите равными 1,0

Сопроти	вление по	од острием	м сваи
	R, к	Па	
Глубина	глині	истые	пески
погруж.	гру	нты	пыле-
острия, м	$I_1 = 0.20$	$I_1 = 0.6$	ватые
3	3000	600	1100
4	3800	700	1250
5	4000	800	1300
7	4300	850	1400
10	5000	900	1500
15	5600	1650	1650

Сопротивление по боковой поверхности сваи f., кПа

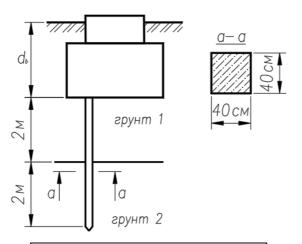
	-17		
Глубина	глині	истые	пески
погруж.	гру	нты	пыле-
острия, м	$I_1 = 0.20$	$I_1 = 0.6$	ватые
3	48	14	25
4	53	16	27

площадь сечения $A=0,2x0,2=0,04m^2$ периметр сечения u=4x0,2=0,8MСопротивление грунта под острием сваи на глубине 8м R=(4300- $5000)*1/3+4300=4533\kappa\Pi a$ Сопротивление грунта по боковой поверхности для участка 1 на глубине 3м $f_1 = 25 \kappa \Pi a$, для участка 2 на глубине $5 M f_2 = 17 \kappa \Pi a$, для участка 3 на глубине $7M f_2 = (58+62)/2 = 60\kappa\Pi a$. длинны участков $h_1 = h_2 = h_3 = 2M$ $F = 1(1 \cdot 4533 \cdot 0.04 + 0.004 + 0.000$ $+0.8 \cdot (1 \cdot 25 \cdot 2 +$ $+1 \cdot 17 \cdot 2 + 1 \cdot 60 \cdot 2) =$ = 344,5 kH

Ответ: 344,5кН

5	56	17	29
6	58	18	31
8	62	19	33
10	65	19	34

Вычислите несущую способность сваи.


Продемонстрируйте умение проектировать свайные фундаменты.

Определите несущую способность забивной сваи трения по грунту для приведенной расчетной схемы. Глубина заложения ростверка $d_b = 2 \text{м}$. Сечение сваи 40 x 40 cm.

Грунт 1 — суглинок полутвердый ($I_1 = 0.2$),

Грунт 2 — глина мягкопластичная ($I_1 = 0.6$).

Все коэффициенты условий работы примите равными 1,0

Сопроти	вление п	од острием	и сваи
	Р, κ	Па	
Глубина	глин	истые	пески
погруж.	гру	НТЫ	пыле-
острия, м	$I_1 = 0.20$	$I_1 = 0.6$	ватые
3	3000	600	1100

Несущая способность сваи трения по грунту вычисляется как:

$$F = \gamma_c(\gamma_{cR} \cdot R \cdot A + u \cdot \sum_{i} \gamma_{cf} \cdot f_i \cdot h_i)$$

здесь γ_c , γ_{cR} и γ_{cf} – коэффициенты условий работы площадь сечения $A=0.4x0.4=0.16m^2$ периметр сечения u=4x0, 4=1, 6MСопротивление грунта под острием сваи на глубине 10м $R=(800+850)/2=825\kappa\Pi a$ Сопротивление грунта по боковой поверхности для участка 1 на глубине 3м $f_1 = 48$ к Π а, для участка 2 на глубине 5м $f_2 = 17 \kappa \Pi a$ длинны участков $h_1 = h_2 = 2M$

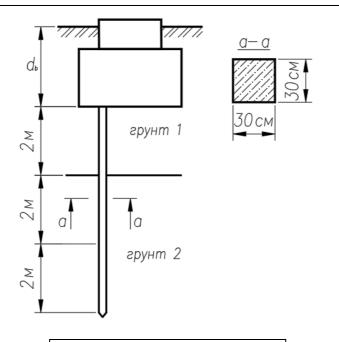
$$F = 1(1 \cdot 825 \cdot 0.16 + 1.6 \cdot (1 \cdot 48 \cdot 2 + 1.17 \cdot 2) = 340 \text{kH}$$

Ответ: 340кН

	4	3800	700	1250
	5	4000	800	1300
	7	4300	850	1400
	10	5000	900	1500
	15	5600	1650	1650
	Сопр	отивлени	е по боков	вой
	1	поверхно		
		f _i , кl	Ia	
	Глубина	ГЛИНІ	истые	пески
	погруж.	1.5	НТЫ	пыле-
	острия, м	$I_1 = 0.20$	$I_1 = 0.6$	ватые
	3	48	14	25
	4	53	16	27
	5	56	17	29
	6	58	18	31
	8	62	19	33
	10	65	19	34
Вычисли	ге несущуг	о спосо	бность с	ваи.
Продемог	нстрируйт	е умени	е проект	ировать
фундамен	нты.			
Опродоли	ITO HOOVIIII	по опоос	61100TT 1	30511D110i

ь свайные

Определите несущую способность забивной сваи трения по грунту для приведенной расчетной схемы. Глубина заложения ростверка $d_b = 4$ м. Сечение сваи 30х30см.


Грунт 1 – песок пылеватый средней плотности, Грунт 2 — суглинок мягкопластичный ($I_1 = 0.6$). Все коэффициенты условий работы примите равными 1,0

Несущая способность сваи трения по грунту вычисляется как:

$$F = \gamma_c(\gamma_{cR} \cdot R \cdot A + u \cdot \sum_{i} \gamma_{cf} \cdot f_i \cdot h_i)$$

3десь γ_c , γ_{cR} u γ_{cf} коэффициенты условий работы площадь сечения $A=0.3x0.3=0.09m^2$ периметр сечения u=4x0,3=1,2MСопротивление грунта под острием сваи на глубине 10м R=900кПа Сопротивление грунта по

боковой поверхности для

Сопроти	вление по	од острием	м сваи
	Р, κ	Па	
Глубина	глині	истые	пески
погруж.	гру	НТЫ	пыле-
острия, м	$I_1 = 0.20$	$I_1 = 0.6$	ватые
3	3000	600	1100
4	3800	700	1250
5	4000	800	1300
7	4300	850	1400
10	5000	900	1500
15	5600	1650	1650
	Глубина погруж. острия, м 3 4 5 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} \text{погруж.} & & \text{грунты} \\ \text{острия, M} & I_l = 0,20 & I_l = 0,6 \\ \hline 3 & 3000 & 600 \\ \hline 4 & 3800 & 700 \\ \hline 5 & 4000 & 800 \\ \hline 7 & 4300 & 850 \\ \hline 10 & 5000 & 900 \\ \hline \end{array}$

Сопротивление по боковой поверхности сваи f_{i} , кПа

Глубина	глині	истые	пески
погруж.	гру	НТЫ	пыле-
острия, м	$I_1 = 0.20$	$I_1 = 0.6$	ватые
3	48	14	25

	4	53	16	27
	5	56	17	29
	6	58	18	31
	8	62	19	33
	10	65	19	34
Вычислит	те несущу	ю спосо	бность с	ваи.

Разработчик рабочей программы, доцент «16» декабря 2024г.

П.А. Кравченко